MORE MICROGRIDS Workshop Paris, 29 January 2010

Microgrid impact on the development of electricity infrastructure

Pierluigi Mancarella, Goran Strbac

© Imperial College London

Outline

- Background
- Microgrid impact on distribution networks
- Microgrids impact on transmission networks
- Microgrids impact on central generation
- Concluding remarks

Background

Electricity system in transition

Impact on Distribution Networks

GDS model

Representation of typical multi-voltage level distribution networks from Germany, Netherlands, Poland, FYROM, UK

Scope of the analysis

- Assessing the impacts of Microgrids on reinforcement cost (related to voltage, thermal or fault level issues) and losses
- Identifying Active Management (AM) strategies to be undertaken in Microgrids, and evaluating their additional benefits, by taking into account their implementation costs (Cost-Benefit Analysis)
- Comparing the impacts of DG characteristics and AM on networks of different characteristics

Active Management Modelling

Instead of reinforcing existing feeders (**passive management** approach), alternative actions can be taken in order to resolve voltage problems:

1)Generation curtailment Identification of 2)Reactive compensation optimal AM solution 3)Co-ordinated control of on-load tap changers P_{Ll}, Q_{Ll} V_1 $R_I + jX_I$ OLTC P_G Q_{G} Qcompensator Qc R_2+jX_2 33kV 11kV V_{2} Piz, 012

Groups of studies: 1. Dynamic network assessment

- Based on the data provided by the project partners regarding demand and DG in a number of future snapshots
- Taking optimal decisions on network investment, including selection of AM strategies to be implemented within a Microgrid framework at different milestone times

Network without \Rightarrow Assessment \Rightarrow Deployment of passive management \Rightarrow Deployment of DG in t1 Network with \Rightarrow Assessment \Rightarrow Deployment of different strategies \Rightarrow Selection of the optimal strategy \Rightarrow DG in t1

- Evaluation of the dynamic impacts of adopting Microgrids (e.g. cases of reinforcement deferral)
 - -> roadmap for network evolution

Groups of studies:

2. Parametric assessment of Microgrids

- Analysis of the impacts of micro DG (micro CHP and micro PV) on current networks
- Quantification of the sensitivity of Microgrid impact with respect to the level of:
- 1. micro DG penetration (low, medium, high)
- 2. demand (low, high)

Key outcomes from partners' scenarios

Impacts on reinforcement cost reduction

- Substantial value in the Polish, FYROM, UK networks (reduction of demand-driven upgrade)
- Zero value in the very strong Dutch network
- Small negative value in the (quite strong) German network at very high DG penetration (fault level problems arising)

Impacts on losses reduction

 Positive, apart from some cases in the Dutch network (significant reverse power flows emerging)

Key outcomes: AM benefits

In cases where voltage problems emerge (e.g. Poland), AM reduces significantly the reinforcement cost, at the expense of higher losses. However, in every case AM is deployed, its overall effect on the total network cost is positive

Losses Reduction

Key outcomes: Parametric analysis

- Significant room for Microgrids to reduce the total network cost in the weaker networks of Poland, FYROM, UK
- The impact is marginal in the stronger Dutch and German networks

Reduction in total network cost in low load scenario (in Euro/kW of peak load)

Modelling of infrastructure replacement scenarios

Urban area with 2000 consumers

Urban network characteristic	LV	MV
Peak demand [MVA]	5	370
Load density [MVA/km2]	5	3.7
Number of 11/0.4kV subst.	25	1,800
Number of 33/11kV subst.	-	12
Network area [km2]	1	100
Network length [km]	27	322
Number of LV consumers	2,000	150,000

MV network with fifteen 33/11 kV substation (UK case) generated from sixty-five LV network inputs

Optimal economic design strategy is used here

Value of DG in urban areas (per voltage levels)

- Uncontrolled CHP (heat following) is relatively well correlated
- **Controlled CHP** that modulates its output to follow electricity provides the highest value for avoided network cost
- **PV** is highly uncorrelated generation/demand profile

Percentage of value of DG w.r.t to total network cost (LV, MV, HV)

Total network cost (% of base cost without DG): losses and investment cost of circuits and transformers

urhan						
	DG penetration levels (%)					
Scenarios	0	10	20	30	50	100
PV	0.0	2.8	4.2	6.1	8.4	10.6
Uncontrolled CHP	0.0	4.7	8.3	12.0	17.3	23.7
Controlled CHP	0.0	5.5	8.7	12.7	20.1	36.3

rural						
Tarar	DG penetration levels (%)					
Scenarios	0	10	20	30	50	100
PV	0.0	1.2	2.0	2.6	3.3	3.7
Uncontrolled CHP	0.0	3.0	5.4	8.9	14.0	23.2
100% Controlled CHP	0.0	3.3	7.0	11.3	17.4	30.1

With 100% controlled CHP (fully autonomous Microgrids), about 1/3 of total network cost can be saved

Note: Excludes cable installation cost

Total specific value of DG (in £/kW of installed DG capacity)

DG provides the highest value (per total installed DG capacity) at lower DG penetration levels and starts to saturate at higher penetrations levels

Environmental benefits (external costs)

Environmental benefits estimated for a carbon price of 20 £/ton

Value of reliability improvement: Allowable expenditure to enable islanding

Customer Sector:	Residential	Commercial	
Annual benefit =	1.4 €/kW _{pk}	15 €/kW _{pk}	
Net present value =	15 €/kW _{pk}	160 €/kW _{pk}	
Peak demand =	2 kW	1000 kW	
Perm. expenditure =	€30	€160,000	
MicroGrid (2,000kW)	€30,000	€320,000	

Impact on Transmission Networks

Transmission studies: impact of DG and controllability for network development

The analysis is based on cost-benefit analysis for optimal transmission development taking into account the trade-off between cost of congestion and cost of losses

Transmission studies: impact of controllable loads for capacity release

Impact on Central Generation

Generation studies: capacity credit

Effect of controllability of micro-CHP for capacity adequacy purposes

Generation studies: value of the contribution to balancing and reserve

Generation studies: cost savings from displaced conventional capacity

Economic magnitude of the capital cost benefits to be traded off against the installation cost of micro-CHP

Concluding remarks

Network value (Externalities): order of magnitude

Positive externality	Value*
Losses reduction in distribution networks	20-40 €kW
Investment deferral in distribution networks	80-150 €kW
Congestion relief/capacity release in transmission	100-180 €kW
networks	
Combined Heat and Power (emission benefits)	10-60 €kW
Energy and environmental efficiency: marginal plants	~ 100 €kW
displaced by RES/CHP for energy/balancing services	

* Figures are given per kW of DG installed capacity

Regulation framework: investment and operational incentives

- MicroGrids have the potential to increase utilisation of existing infrastructure and substitute for reinforcements
- The existing regulation incentivises investment over operational alternatives
- This may prevent implementation of technically effective and economically efficient 'non-network' solutions, such as Microgrid, as an alternative to the conventional network asset reinforcement based solutions
- o Integration of Microgrids will lead to increase in network loading
- Being "smart" may reduce revenue to network operators while potentially increasing risks
 - Efficient solutions are commercially unattractive

Summary

- New class of tools for comprehensive assessment of economic and environmental performance of Microgrids
- A number of system-level benefits of Microgrids identified and quantified throughout Europe
 - Network benefits are higher for weaker and more congested networks, and controllable systems broaden the overall range of benefits
 - Benefits to central generation operation are extremely significant for inflexible systems
- New regulatory and commercial framework for facilitating competition between conventional and distributed energy is needed

MORE MICROGRIDS Workshop Paris, 29 January 2010

Microgrid impact on the development of electricity infrastructure

Pierluigi Mancarella, Goran Strbac

© Imperial College London