



# **BETA SESSION 4b: Integration of Renewable Energy Sources and Distributed Generation**

# **MicroGrids**



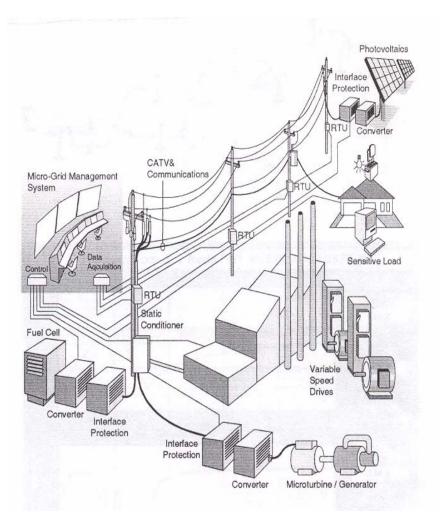
Barcelona 12-15 May 2003



#### **MICROGRIDS**

#### LARGE SCALE INTEGRATION OF MICRO-GENERATION TO LOW VOLTAGE GRIDS – TARGET ACTION I

#### PROJECT No: NNE5-2001-00463 CONTRACT No: ENK5-CT-2002-00610 Total Eligible Costs: 4,394 kE, EC Contribution 2,494 kE Duration: 36 months http://microgrids.power.ece.ntua.gr






### **MICROGRIDS - Definition**

Interconnection of small, modular generation to low voltage distribution systems can form a new type of power system, **the MicroGrid**.

MicroGrids can be connected to the main power network or be operated autonomously, similar to power systems of physical islands.





Barcelona 12-15 May 2003

### **MICROGRIDS - Objectives**

► To increase penetration of RES and other microsources in order to contribute for the reduction of GHG emissions.

► To study operation of MicroGrids in parallel with the mains and in islanding conditions that may follow faults.

► To define, develop and demonstrate control strategies that will ensure the most efficient, reliable and economic operation and management of MicroGrids.



Barcelona 12-15 May 2003

#### **MICROGRIDS - Objectives (2)**

► To define appropriate protection and grounding policies that will assure safety of operation and capability of fault detection, isolation and islanded operation.

► To identify the needs and develop the telecommunication infrastructures and communication protocols required.

► To determine the economic benefits and to propose systematic methods and tools to quantify these benefits and to propose appropriate regulatory measures.





### **MICROGRIDS - Description of Work**

- Study of design and operation of MicroGrids so that increased penetration of RES and other DG achieved;
- Development and demonstration of control strategies so that operation of MicroGrids meets customer requirements and technical constraints and delivers power in the most efficient, reliable and economic way;

• Determination of economic and environmental benefits of the MicroGrid operation and proposal of systematic methods and tools to quantify these benefits and to propose appropriate regulatory measures;





# **MICROGRIDS - Description of Work (2)**

- Definition of appropriate protection and grounding policies for safety of operation and capability of fault detection;
- Needs and development of telecommunication infrastructures and communication protocols;
- •Simulation and demonstration of MicroGrid operation on laboratory models;

• Projection of MicroGrid development on distribution feeders in Greece, Portugal and overseas France quantifying via simulation the environmental, reliability and economic benefits from their operation.





### **Milestones and expected results**

Investigation, Development and Demonstration of the operation, control, protection, safety and telecommunication infrastructure of MicroGrids, determination and quantification of their economic benefits.

The effect of MicroGrids formation on:

- increase of RES and micro sources share (target 15%),
- reduction of annual losses (target 10%),
- increase of reliability levels (target 30%)
- reduction of energy cost for the end-user (target 10%)

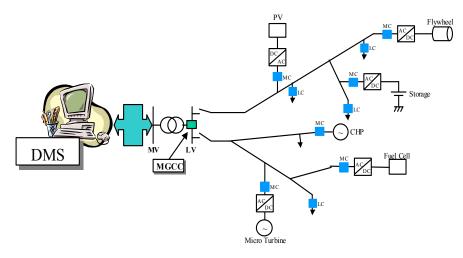
via simulation on actual distribution systems





# **MICROGRIDS - 9 Workpackages**

- WP A: Development of Steady State and Dynamic Simulation Tools
- WPB Development of Local Micro Source Controllers
- WPC Development of Micro Grid Central Controller
- WPD Development of Emergency Functions
- WPE Investigation of Safety and Protection
- WPF Investigation of Telecommunication Infrastructures & Communication Protocols
- WPG Investigation of Regulatory, Commercial, Economic & Environmental Issues
- WPH Development of Laboratory MicroGrids
- WPI Evaluation on study case networks






#### **MICROGRIDS - Control Issues**

Development of innovative, sophisticated control of the MicroGrid comprising three critical control levels:

- · Local Micro Source (MC) and Load Controllers (LC)
- MicroGrid System Central Controller (MGCC)
- Distribution Management System (DMS)







# **MICROGRIDS - Market Prospects**

• DG increasing worldwide due to a number of reasons, most important government support for CHP and RES, desire for diversification of energy sources and commercial advantage.

- Next evolutionary step is the formation of MicroGrids (few city blocks, fuelled by electricity from many small, highly efficient and low-emission DGs, linked by telecommunication systems)
- One leading manufacturer estimates DG and MicroGrids will create business for them about \$1 billion annually by 2005, rising to \$2.5 billion in 2010.
- Booming business in components like Microturbines (in 2000, 2000 units of 100 MW, within five years more than 2000 MW annually).
- Besides Europe, CHP markets (Asia) emerging fast (25% increase per year).





#### **MICROGRIDS - Consortium**

| ſUA)       |
|------------|
|            |
| )          |
|            |
|            |
|            |
|            |
| rto (INESC |
| gy (UMIST) |
|            |
| hodes et   |
|            |
|            |
| NERG)      |
|            |