

Microgrids – A Possible Future Energy Configuration?

Nikos Hatziargyriou NTUA, Greece

Goran Strbac Nh@power.ece.ntua.gr Goran.Strbac@umist.ac.uk UMIST, UK

Topics

- Definition
- Technical, Economic and Environmental Benefits of MicroGrids
- Conceptual design of MicroGrids
- Integration requirements and device-network interfaces
- Market and regulatory frameworks for MicroGrids
- Modelling and simulation of MicroGrids
- The MicroGrids Project
- Conclusions

What are MICROGRIDS?

Interconnection of small, modular generation to low voltage distribution systems forms a new type of power system, the MicroGrid. MicroGrids can be connected to the main power network or be operated autonomously, similar to power systems of physical islands.

Technical, economic and environmental benefits

- Energy efficiency
- Minimisation of the overall energy consumption
- Improved environmental impact
- Improvement of energy system reliability and resilience
- Network benefits
- Cost efficient electricity infrastructure replacement strategies
- Cost benefit assessment

Energy Efficiency - Combined Heat and Power

Prof. Dr. J. Schmid

Up to now:

- Central power stations
- Decentral heat production

In Future:

• Decentral combined heat and power

 \Rightarrow 1/3 less consumption of fossil sources of energy

Cost of Power Outages for Selected Commercial Customers

- Brokerage Operations \$6,480,000 per hour
- Credit Card Operations \$2,580,000 per hour
- Airline Reservations \$90,000 per hour
- Telephone Ticket Sales \$72,000 per hour
- Cellular Communications \$41,000 per hour

Source: "Reliability and Distributed Generation", a White Paper by Arthur D. Little

ET S

Conceptual Design of MicroGrids

- energy management within and outside of the distributed power system
- control philosophies (hierarchical or distributed)
- islanding and interconnected operation philosophy
- type of networks (ac or dc, fixed or variable frequency)
- management of power flow constraints, voltage and frequency
- device and interface response and intelligence requirements
- protection options for networks of variable configurations
- next-generation communications infrastructure (slow, fast)
- standardisation of technical and commercial protocols and hardware

MicroGrids – Hierarchical Control

MicroGrid Central Controller (MGCC) promotes technical and economical operation, provides set points to LC and MC; Interface with loads and micro sources and DMS;
MC and LC Controllers: interfaces to control interruptible loads and micro sources (active and reactive generation levels).

Interconnected Operation

- MicroGrids can operate:
 - Normal Interconnected Mode :
 - Connection with the main MV grid;
 - Supply, at least partially, the loads or injecting in the MV grid;
 - In this case, the MGCC:
 - Interfaces with MC, LC and DMS;
 - Perform studies (forecasting, economic scheduling, DSM functions,...);

Integration requirements and device-network interfaces

- operation as the "good" and "model citizen"
- seamless transition between connection/islanding
- resilience under changing conditions
- operation fault level management and protection
- recovery from disturbances and contribution to network restoration
- interfacing ac and dc networks
- Safety, modularity, robustness, low losses, calibration and self-tuning

Modelling and simulation of MicroGrids

- modelling of generator technologies (micro generators, biomass fuelled generation, fuel cells, PV, wind turbines), storage, and interfaces
- load modelling and demand side management
- unbalanced deterministic and probabilistic load flow and fault calculators
- unbalanced transient stability models
- stability and electrical protection
- simulation of steady state and dynamic operation
- simulation of interactions between Microgrids

Mcrocket

Market and Regulatory frameworks for MicroGrids

- coordinated but decentralised energy trading and management
- market mechanisms to ensure efficient, fair and secure supply and demand balancing
- development of open and closed loop price-based energy and ancillary services arrangements for congestion management
- secure and open access to the network and efficient allocation of network costs
- alternative ownership structures, energy service providers
- new roles and responsibilities of supply company, distribution company, and consumer/customer

The MicroGrids Project

R&D Objectives:

- Contribute to increase the share of renewables and to reduce GHG emissions;
- Study the operation of MicroGrids in normal and islanding conditions;
- Optimize the operation of local generation sources;
- Develop and demonstrate control strategies to ensure efficient, reliable and economic operation;
- Simulate and demonstrate a MicroGrid in lab conditions;
- Define protection and grounding schemes;
- Define communication infrastructure and protocols;
- Identify legal, administrative and regulatory barriers and propose measures to eliminate them;

MICROGRIDS - 9 Workpackages

- WP A: Development of Steady State and Dynamic Simulation Tools
- WPB Development of Local Micro Source Controllers
- WPC Development of Micro Grid Central Controller
- WPD Development of Emergency Functions
- WPE Investigation of Safety and Protection
- WPF Investigation of Telecommunication Infrastructures and Communication Protocols
- WPG Investigation of Regulatory, Commercial, Economic and Environmental Issues
- WPH Development of Laboratory MicroGrids
- WPI Evaluation of the system performance on study case networks

Challenges

Specific technical challenges:

- Relatively large imbalances between load and generation to be managed (significant load participation required, need for new technologies, review of the boundaries of microgrids)
- Specific network characteristics (strong interaction between active and reactive power, control and market implications)
- Small size (challenging management)
- Use of different generation technologies (prime movers)
- Presence of power electronic interfaces
- Protection
- Unbalanced operation

Highlight - Permissible expenditure to		
enable islanding		
Customer Sector:	Residential	Commercial
Annual benefit =	1.4 £/kW _{pk}	15 £/kW _{pk}
Net present value =	15 £/kW _{pk}	160 £/kW _{pk}
Peak demand =	2 kW	1000 kW
Perm. expenditure =	£30	£160,000
MicroGrid (2,000kW) IEA Seminar " <i>DISTRIBUTED GENERATIC</i>	£30,000 DN: KEY ISSUES, CHALLEN	£320,000 <i>GES, ROLES</i> ", Paris, 1 st March 2004

Residential Feeder with DGs

Good Citizen Cost Reduction : 12.29 %

Model Citizen Cost reduction : 18.66%

Steady state security increases cost by 27% and 29% respectively.

