

Security of Supply and Power Quality through DER

Nikos Hatziargyriou nh@power.ece.ntua.gr NTUA, Greece

Technical, economic and environmental benefits of DER

- Energy efficiency
- Minimisation of the overall energy consumption
- Improved environmental impact
- Improvement of energy system reliability and quality of service
- Network benefits
- Cost efficient electricity infrastructure replacement strategies

Cost of Power Outages for Selected Commercial Customers

- Brokerage Operations \$6,480,000 per hour
- Credit Card Operations \$2,580,000 per hour
- Airline Reservations \$90,000 per hour
- Telephone Ticket Sales \$72,000 per hour
- Cellular Communications \$41,000 per hour

Source: "Reliability and Distributed Generation", a White Paper by Arthur D. Little

MICROGRIDS - Maximizing DER benefits

Interconnection of small, modular generation, storage and controllable load to low voltage distribution systems form **Microgrids**. Microgrids can be connected to the main power network or be operated autonomously, similar to power systems of physical islands.

Microgrids – Hierarchical Control

Microgrid Central Controller (MGCC) promotes technical and economical operation, provides set points to LC and MC; Interface with loads and micro sources and DMS;
MC and LC Controllers: interfaces to control interruptible loads and micro sources (active and reactive generation levels).

Interconnected Operation

- Microgrids can operate:
 - Normal Interconnected Mode :
 - Connection with the main MV grid;
 - Supply, at least partially, the loads or inject in the MV grid;
 - In this case, the MGCC:
 - Interfaces with MC, LC and DMS;
 - Optimizes operation (economic scheduling, forecasting, DSM functions, Security assessment...);

- Eventually, triggers black start functions.

MICROGRIDS Highlight 1:							
Permissible expenditure to enable islanding							
Customer Sector:		Residential	Commercial				
Annual benefit	=	2 €/kW _{pk}	25 €/kW _{pk}				
Net present value	=	20 €/kW _{pk}	250 €/kW _{pk}				
Peak demand	=	2 kW	1000 kW				
Perm. expenditure	=	€40	€250,000				
MicroGrid (2,000kV Intern.Colloquium: "SELECTED RECEN	V) It resu	€40,000 JLTS ON THE INTEGRATIO	€500,000 <i>ON OF RES AND DG</i> ", Kassel, 30 th June 04				

- All three feeders taken into account
- Typical demand pattern and actual renewable power production time-series
- Prices from Amsterdam Power Exchange.
- Offers from the micro sources partly reflecting their production and installation cost (subsidized in Greece)
- Cost reduction of 6.6% for policies 1 and 2 without steady state security
- Steady state security increases cost by 6%.

Residential Feeder with DGs

Good Citizen Cost Reduction : 12.29 %

Ideal Citizen Cost reduction : 18.66%

Steady state security increases cost by 27% and 29% respectively.

- Average values for emissions of the main grid
- Data about emissions of the μ-sources.

27% reduction in CO_2 emissions due to policy1

Maximum reduction in CO₂ emissions 548kgr/day- 22.11% higher cost

MICROGRIDS Highlight 3: Reliability Assessment of LV Network

- System Maximum Load Demand: 188 kW
- Capacity of System Infeed: 210 kW (100%)
- Installed Capacity of Wind Generation: 15 kW
- Installed Capacity of PVs: 4*2,5+1*3 = 13 kW
- Installed Capacity of Fuel Cells: 30 kW
- Installed Capacity of Microturbines: 30 kW

Reliability Assessment

	FLOL (ev/yr)	LOLE (hrs/yr)	LOEE (kWh/yr)
Infeed Capacity 100%			
(no microsources)	2,130	23,93	2279,03
Infeed Capacity 80%			
(no microsources)	58,14	124,91	3101,52
Infeed Capacity 80% (with Wind + PV)	14,02	41,67	2039,41
Infeed Capacity 80% (all microsources)	2,28	15,70	716,36

Reliability Assessment – continued

FLOL (ev/yr) LOLE (hrs/yr) LOEE (kWh/yr)

Infeed Capacity 90%

(no microsources)	8,52	31,08	2313,77					
Infeed Capacity 90%, system load 207 kW (+10%)								
(no microsources)	44,10	92,75	3073,84					
Infeed Capacity 90%, load 207 kW								
(with Wind + PV)	11,35	36,69	2232,54					
Infeed Capacity 90%, load 207 kW								
(all microsources)	2,305	16,55	911,68					

MICROGRIDS Highlight 4: Simulation Tool

- **Phasor approach** adopted for network and sources to increase simulation efficiency.
- Natural **phase quantities** (a-b-c) are used.
- Microsources represented as **EMFs behind impedance**, neglecting the "stator transients".
- Lines with **any X/R ratio** can be handled.
- Radial and non-radial network topologies can be handled.
- All basic neutral earthing schemes can be represented (TN, TT, IT).
- **Unbalanced conditions** (network, sources, loads) can be modelled and simulated.
- Dynamic simulation of **grid-connected and autonomous** mode of operation.
- Microsources integrated in the code with their respective electronic interfaces.

OPEN QUESTIONS

- Security of Supply (quantification)
 - Can DG provide generation security of supply (forget network)
 - Can DG displace conventional generation? Can we rely on wind
 - Can we retire conventional plant because we have DG?
 - Can DG provide system support (ancillary services), frequency, flow and voltage control
 - Can DG contribute to network security (blackouts occur because of faults on Transmission)
- EU T&D replacement policies (quantification)
 - What is the role of DG in T&D reinforcement and replacement policies

